
An Introduction
to Metaprogramming
in Ruby

Marc Paterno
Neat Topics for Programmers
21 December 2010

“I always knew one day Smalltalk
would replace Java.

I just didn’t know it would be called Ruby.”

— Kent Beck,
creator of Extreme Programming and

Test Driven Development

Goals

Learn enough Ruby to follow examples

Become familiar with the Ruby object model

Become familiar with the meaning and purpose of
metaprogramming

3 / 17

What is metaprogramming

Definition

Metaprogramming is writing code that manipulates language
constructs (e.g. classes and methods) at runtime.

4 / 17

A quick introduction to Ruby

5 / 17

Ruby is dynamic

Variables do not need to be declared; they “spring into
existence” when first encountered.

Variables do not have types

Variables are references to objects—objects have “types”1.

Try this now!

>> a = 1 # => 1
>> a.class() # => Fixnum
>> a = ’hello’ # => ’hello’
>> a.class() # => String

1More precisely, objects belong to classes.
6 / 17

Ruby is object-oriented

Everything is an object.
object = state + behavior

Every object is an instance of a class.
behavior comes from classes

Call class to get the class of an object.

Try this now!

>> 1.class() # => Fixnum
>> ’hello’.class() # => String
>> nil.class() # => NilClass
>> nil.class().class() # => Class

7 / 17

Classes and objects

class a category of objects that share common
functionality

but not necessarily the same state
space

object an instance of a class, with unique state and
identity

Every object can be asked for:

its identity: x.object_id()

its class: x.class()

In Ruby, different instances of the same class do not necessarily
have the same member data (instance variables)

8 / 17

Classes and objects

class a category of objects that share common
functionality but not necessarily the same state
space

object an instance of a class, with unique state and
identity

Every object can be asked for:

its identity: x.object_id()

its class: x.class()

In Ruby, different instances of the same class do not necessarily
have the same member data (instance variables)

8 / 17

Invoking behavior
Behavior is always invoked by sending a message to an
object
Usually this is done with the dot . operator
No free function: sending message to self

Try this now!

>> i = 1 # => 1
>> i.succ() # => 2
>> puts(i) # => nil
1

There are also more exotic ways to send messages

Try this now!

>> i.send(:succ) # => 2

9 / 17

Writing methods
Functions are called methods.

Ruby code

def greeting(name) # def’n starts with def
"Hello, " + name

end # def’n ends with end

puts(greeting("Marc"))
puts(greeting("class"))

Ruby does not require parentheses for method calls

Ruby doesn’t even require parentheses in method
definitions

. . . but don’t do that, because it is weird

10 / 17

Writing methods
Functions are called methods.

Ruby code

def greeting(name) # def’n starts with def
"Hello, " + name

end # def’n ends with end

puts greeting "Marc"
puts greeting "class"

Ruby does not require parentheses for method calls

Ruby doesn’t even require parentheses in method
definitions

. . . but don’t do that, because it is weird

10 / 17

Writing methods
Functions are called methods.

Ruby code

def greeting name # def’n starts with def
"Hello, " + name

end # def’n ends with end

puts greeting "Marc"
puts greeting "class"

Ruby does not require parentheses for method calls

Ruby doesn’t even require parentheses in method
definitions

. . . but don’t do that, because it is weird

10 / 17

Writing methods
Functions are called methods.

Ruby code

def greeting(name) # def’n starts with def
"Hello, " + name

end # def’n ends with end

puts greeting "Marc"
puts greeting "class"

Ruby does not require parentheses for method calls

Ruby doesn’t even require parentheses in method
definitions

. . . but don’t do that, because it is weird

10 / 17

Writing classes

Ruby code

require ’date’
class Person
def initialize(name, dob)
@name, @dob = name, Date.parse(dob)

end
approximate age in years
def age
((Date.today-@dob)/365).to_i

end
end
emp = Person.new "Gaius Julius Caesar",

"13 July 100 BC"
puts emp.age # => 2110

11 / 17

The Ruby Object Model

12 / 17

The critical concepts

objects

self

current class

13 / 17

Inside an Object

Each object is associated with another object, called its class

the associated object’s class is always Class
the associated object is where Ruby starts to look for
methods
if the required method is not found,
method lookup goes “up the chain” to any included
modules, and if the method is still not found,
continues with the class’s superclass

Let’s look at an example . . .

14 / 17

Method lookup
x = ’cat’ x is the name of an object

x.class x’s class is the object named String
x.class.ancestors String’s ancestors are classes

and modules

x ’cat’
data

15 / 17

Method lookup
x = ’cat’ x is the name of an object
x.class x’s class is the object named String

x.class.ancestors String’s ancestors are classes
and modules

x ’cat’

String

data

class

15 / 17

Method lookup
x = ’cat’ x is the name of an object
x.class x’s class is the object named String
x.class.ancestors String’s ancestors are classes

and modules

x ’cat’

String

Comparable

data

class

includes

15 / 17

Method lookup
x = ’cat’ x is the name of an object
x.class x’s class is the object named String
x.class.ancestors String’s ancestors are classes

and modules

x ’cat’

String Object

Comparable

data

class

includes

super

15 / 17

Method lookup
x = ’cat’ x is the name of an object
x.class x’s class is the object named String
x.class.ancestors String’s ancestors are classes

and modules

x ’cat’

String Object

Comparable Kernel

data

class

includes

super

includes

15 / 17

Method lookup
x = ’cat’ x is the name of an object
x.class x’s class is the object named String
x.class.ancestors String’s ancestors are classes

and modules

x ’cat’

String Object BasicObject

Comparable Kernel

data

class

includes

super

includes

super

15 / 17

Method lookup: with eigenclass

x = ’cow’
def x.speak
puts "moo"

end

x ’cat’

«Anonymous» speak

String Object BasicObject

Comparable Kernel

data

eigenclass

super

method

includes

super

includes

super

16 / 17

Ruby book

Metaprogramming Ruby, Paolo Perrotta

17 / 17

